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Abstract

We consider the sparse Fourier transform problem:
given a complex vector x of length n, and a parameter
k, estimate the k largest (in magnitude) coefficients
of the Fourier transform of x. The problem is of key
interest in several areas, including signal processing,
audio/image/video compression, and learning theory.

We propose a new algorithm for this problem. The
algorithm leverages techniques from digital signal pro-
cessing, notably Gaussian and Dolph-Chebyshev filters.
Unlike the typical approach to this problem, our algo-
rithm is not iterative. That is, instead of estimating
“large” coefficients, subtracting them and recursing on
the reminder, it identifies and estimates the k largest
coefficients in “one shot”, in a manner akin to sketch-
ing/streaming algorithms. The resulting algorithm is
structurally simpler than its predecessors. As a conse-
quence, we are able to extend considerably the range of
sparsity, k, for which the algorithm is faster than FFT,
both in theory and practice.

1 Introduction

The Fast Fourier Transform (FFT) is one of the most
fundamental numerical algorithms. It computes the
Discrete Fourier Transform (DFT) of an n-dimensional
signal in O(n log n) time. The algorithm plays a central
role in several application areas, including signal pro-
cessing and audio/image/video compression. It is also
a fundamental subroutine in integer multiplication and
encoding/decoding of error-correcting codes.

Any algorithm for computing the exact DFT must
take time at least proportional to its output size, which
is Θ(n). In many applications, however, most of the
Fourier coefficients of a signal are small or equal to zero,
i.e., the output of the DFT is (approximately) sparse.
For example, a typical 8x8 block in a video frame has
on average 7 non-negligible coefficients (i.e., 89% of the
coefficients are negligible) [CGX96]. Images and audio
data are equally sparse. This sparsity provides the ra-
tionale underlying compression schemes such as MPEG
and JPEG. Other applications of sparse Fourier analysis
include computational learning theory [KM91, LMN93],
analysis of boolean functions [KKL88, O’D08], multi-
scale analysis [DRZ07], compressed sensing [Don06,
CRT06], similarity search in databases [AFS93], spec-
trum sensing for wideband channels [LVS11], and data-
center monitoring [MNL10].

When the output of the DFT is sparse or approx-
imately sparse, one can hope for an “output-sensitive”
algorithm, whose runtime depends on k, the number of
computed “large” coefficients. Formally, given a com-
plex vector x whose Fourier transform is x̂, we require
the algorithm to output an approximation x̂′ to x̂ that
satisfies the following `2/`2 guarantee:1

(1.1) ‖x̂− x̂′‖2 ≤ C min
k-sparse y

‖x̂− y‖2,

where C is some approximation factor and the mini-
mization is over k-sparse signals. Note that the best
k-sparse approximation can be obtained by setting all

1The algorithm in this paper has a somewhat stronger guar-
antee; see “Results” for more details.



but the largest k coefficients of x̂ to 0. Such a vector
can be represented using only O(k) numbers. Thus, if k
is small, the output of the algorithm can be expressed
succinctly, and one can hope for an algorithm whose
runtime is sublinear in the signal size n.

The first such sublinear algorithm (for the
Hadamard transform) was presented in [KM91]. Shortly
after, several sublinear algorithms for the Fourier trans-
form over the complex field were discovered [Man92,
GGI+02, AGS03, GMS05, Iwe10a, Aka10].2 These
algorithms have a runtime that is polynomial in k
and log n.3 The exponents of the polynomials, how-
ever, are typically large. The fastest among these
algorithms have a runtime of the form O(k2 logc n)
(as in [GGI+02, Iwe10a]) or the form O(k logc n))(as
in [GMS05]), for some constant c > 2.

In practice, the exponents in the runtime of these
algorithms and their complex structures limit their ap-
plicability to only very sparse signals. In particular, the
more recent algorithms were implemented and evaluated
empirically against FFTW, an efficient implementation
of the FFT with a runtime O(n log n) [Iwe10a, IGS07].
The results show that the algorithm in [GMS05] is com-
petitive with FFTW for n = 222 and k ≤ 135 [IGS07].
The algorithms in [GGI+02, Iwe10a] require an even
sparser signal (i.e., larger n and smaller k) to be com-
petitive with FFTW.

Results. In this paper, we propose a new sub-
linear algorithm for sparse Fourier transform over the
complex field. The key feature of our algorithm is its
simplicity: the algorithm has a simple structure, which
leads to efficient runtime with low big-Oh constant.
Specifically, for the typical case of n a power of 2, our
algorithm has the runtime of

O(log n
√
nk log n).

Thus, the algorithm is faster than FFTW for k up to
O(n/ log n). In contrast, earlier algorithms required
asymptotically smaller bounds on k.

This asymptotic improvement is also reflected in
empirical runtimes. For example, for n = 222, our
algorithm outperforms FFTW for k up to about 2200,
which is an order of magnitude higher than previously
achieved.

The estimations provided by our algorithm satisfy
the so-called `∞/`2 guarantee. Specifically, let y be
the minimizer of ‖x̂ − y‖2. For a precision parameter
δ = 1/nO(1), and a constant ε > 0, our (randomized)

2See [GST08] for a streamlined exposition of some of the
algorithms.

3Assuming all inputs are represented using O(logn) bits.

algorithm outputs x̂′ such that:

(1.2) ‖x̂− x̂′‖2∞ ≤ ε‖x̂− y‖22/k + δ‖x‖21
with probability 1 − 1/n. The additive term that
depends on δ appears in all past algorithms [Man92,
GGI+02, AGS03, GMS05, Iwe10a, Aka10], although
typically (with the exception of [Iwe10b]) it is eliminated
by assuming that all coordinates are integers in the
range {−nO(1) . . . nO(1)} . In this paper, we keep the
dependence on δ explicit.

The `∞/`2 guarantee of Equation (1.2) is stronger
than the `2/`2 guarantee of Equation 1.1. In particular,
the `∞/`2 guarantee with a constant approximation
factor C implies the `2/`2 guarantee with a constant
approximation factor C ′, if one sets all but the k largest
entries in x̂′ to 0.4 Furthermore, instead of bounding
only the collective error, the `∞/`2 guarantee ensures
that every Fourier coefficient is well-approximated.

Techniques. We start with an overview of the
techniques used in prior works, then describe our con-
tribution in that context. At a high level, sparse Fourier
algorithms work by binning the Fourier coefficients into
a small number of buckets. Since the signal is sparse
in the frequency domain, each bucket is likely5 to have
only one large coefficient, which can then be located (to
find its position) and estimated (to find its value). For
the algorithm to be sublinear, the binning has to be
done in sublinear time. To achieve this goal, these algo-
rithms bin the Fourier coefficient using an n-dimensional
filter vector G that is concentrated both in time and
frequency, i.e., G is zero except at a small number of
time coordinates, and its Fourier transform Ĝ is negli-
gible except at a small fraction (about 1/k) of the fre-
quency coordinates (the “pass” region). Depending on
the choice of the filter G, past algorithms can be classi-
fied as: iteration-based or interpolation-based.

Iteration-based algorithms use a filter that has a sig-
nificant mass outside its pass region[Man92, GGI+02,
GMS05]. For example, the papers [GGI+02, GMS05]
set G to the box-car function, in which case Ĝ is the
Dirichlet kernel, whose tail decays in an inverse linear
fashion. Since the tail decays slowly, the Fourier coef-
ficients binned to a particular bucket “leak” into other
buckets. On the other hand, the paper [Man92] esti-
mates the convolution in time domain via random sam-
pling, which also leads to a large estimation error. To re-
duce these errors and obtain the `2/`2 guarantee, these
algorithms have to perform multiple iterations, where

4This fact was implicit in [CM06]. For an explicit statement
and proof see [GI10], remarks after Theorem 2.

5One can randomize the positions of the frequencies by sam-
pling the signal in time domain appropriately [GGI+02, GMS05].
See section 3 part (b) for the description.



each iteration estimates the largest Fourier coefficient
(the one least impacted by leakage) and subtracts its
contribution to the time signal. The iterative update of
the time signal causes a large increase in runtime. The
algorithms in [GGI+02, Man92] perform this update by
going through O(k) iterations each of which updates
at least O(k) time samples, resulting in an O(k2) term
in the runtime. The algorithm [GMS05], introduced
a ”bulk sampling” algorithm that amortizes this pro-
cess but it requires solving instances of a non-uniform
Fourier transform, which is expensive in practice.

Interpolation-based algorithms are less common
and limited to the design in [Iwe10a]. This approach
uses a leakage-free filter, G, to avoid the need for itera-
tion. Specifically, the algorithm in [Iwe10a] uses for G a
filter in which Gi = 1 iff i mod n/p = 0 and Gi = 0 oth-
erwise. The Fourier transform of this filter is a “spike
train” with period p. This filter does not leak: it is equal
to 1 on 1/p fraction of coordinates and is zero elsewhere.
Unfortunately, however, such a filter requires that p di-
vides n; moreover, the algorithm needs several different
values of p. Since in general one cannot assume that n
is divisible by all numbers p, the algorithm treats the
signal as a continuous function and interpolates it at
the required points. Interpolation introduces additional
complexity and increases the exponents in the runtime.

Our approach. The key feature of our algorithm
is the use of a different type of filter. In the simplest
case, we use a filter obtained by convolving a Gaussian
function with a box-car function. A more efficient filter
can be obtained by replacing the Gaussian function
with a Dolph-Chebyshev function. (See Fig. 1 for an
illustration.)

Because of this new filter, our algorithm does not
need to either iterate or interpolate. Specifically, the
frequency response of our filter Ĝ is nearly flat inside
the pass region and has an exponential tail outside
it. This means that leakage from frequencies in other
buckets is negligible, and hence, our algorithm need
not iterate. Also, filtering can be performed using the
existing input samples xi, and hence our algorithm need
not interpolate the signal at new points. Avoiding both
iteration and interpolation is the key feature that makes
our algorithm efficient.

Further, once a large coefficient is isolated in a
bucket, one needs to identify its frequency. In contrast
to past work which typically uses binary search for this
task, we adopt an idea from [PS10] and tailor it to
our problem. Specifically, we simply select the set of
“large” bins which are likely to contain large coefficients,
and directly estimate all frequencies in those bins. To
balance the cost of the bin selection and estimation
steps, we make the number of bins somewhat larger than

the typical value of O(k). Specifically, we use B ≈
√
nk,

which leads to the stated runtime. 6

2 Notation

Transform-Related Notations. For an input
signal x ∈ Cn, its Fourier spectrum is denoted by x̂.
We will use x ∗ y to denote the convolution of x and y,
and x ·y to denote the coordinate-wise product of x and
y. Recall that x̂ · y = x̂ ∗ ŷ. We define ω = e2πi/n to be
a primitive nth root of unity (here i =

√
−1, but in the

rest of the paper, i is an index).
Indices-Related Notations. All operations on

indices in this paper are taken modulo n. Therefore
we might refer to an n-dimensional vector as having
coordinates {0, 1, . . . , n − 1} or {0, 1, . . . , n/2,−n/2 +
1, . . . ,−1}. interchangeably. Finally, [s] refers to the set
of indices {0, . . . , s − 1}, whereas supp(x) refers to the
support of vector x, i.e., the set of non-zero coordinates.

In this paper we assume that n is an integer power
of 2.

3 Basics

(a) Window Functions. In digital signal pro-
cessing [OSB99] one defines window functions in the
following manner:

Definition 3.1. We define a (ε, δ, w) standard win-
dow function to be a symmetric vector F ∈ Rn with
supp(F ) ⊆ [−w/2, w/2] such that F̂0 = 1, F̂i > 0 for all
i ∈ [−εn, εn], and |F̂i| < δ for all i /∈ [−εn, εn].

Claim 3.2. For any ε and δ, there exists an
(ε, δ, O( 1

ε log(1/δ))) standard window function.

Proof. This is a well known fact [Smi11]. For ex-
ample, for any ε and δ, one can obtain a stan-
dard window by taking a Gaussian with standard de-
viation Θ(

√
log(1/δ)/ε) and truncating it at w =

O( 1
ε log(1/δ))). The Dolph-Chebyshev window function

also has the claimed property but with minimal big-Oh
constant [Smi11] (in particular, half the constant of the
truncated Gaussian). �

The above definition shows that a standard window
function acts like a filter, allowing us to focus on a subset
of the Fourier coefficients. Ideally, however, we would
like the pass region of our filter to be as flat as possible.

6 Although it is plausible that one could combine our filters

with the binary search technique of [GMS05] and achieve an
algorithm with a O(k logc n) runtime, our preliminary analysis
indicates that the resulting algorithm would be slower. Intuitively,

observe that for n = 222 and k = 211, the values of
√
nk = 216.5 ≈

92681 and k log2 n = 45056 are quite close to each other.



Definition 3.3. We define a (ε, ε′, δ, w) flat window
function to be a symmetric vector F ∈ Rn with
supp(F ) ⊆ [−w/2, w/2] such that F̂i ∈ [1 − δ, 1 + δ]
for all i ∈ [−ε′n, ε′n] and |F̂i| < δ for all i /∈ [−εn, εn].

A flat window function (like the one in Fig. 1) can be ob-
tained from a standard window function by convolving
it with a “box car” window function, i.e., an interval.
Specifically, we have the following.

Claim 3.4. For any ε, ε′, and δ with ε′ < ε, there exists
an (ε, ε′, δ, O( 1

ε−ε′ log n
δ )) flat window function.

Note that in our applications we have δ < 1/nO(1)

and ε = 2ε′. Thus the window lengths w of the flat
window function and the standard window function are
the same up to a constant factor.

Proof. Let f = (ε − ε′)/2, and let F be an
(f, δ

(ε′+ε)n , w) standard window function with minimal

w = O( 2
ε−ε′ log (ε+ε′)n

δ ). We can assume ε, ε′ > 1/(2n)

(because [−εn, εn] = {0} otherwise), so log (ε+ε′)n
δ =

O(log n
δ ). Let F̂ ′ be the sum of 1 + 2(ε′ + f)n adjacent

copies of F̂ , normalized to F̂ ′0 ≈ 1. That is, we define

F̂ ′i =

∑(ε′+f)n
j=−(ε′+f)n F̂i+j∑fn

j=−fn F̂j

so by the shift theorem, in the time domain

F ′a ∝ Fa
(ε′+f)n∑

j=−(ε′+f)n

ωj .

Since F̂i > 0 for |i| ≤ fn, the normalization factor∑fn
j=−fn F̂j is at least 1. For each i ∈ [−ε′n, ε′n], the

sum on top contains all the terms from the sum on
bottom. The other 2ε′n terms in the top sum have
magnitude at most δ/((ε′ + ε)n) = δ/(2(ε′ + f)n), so
|F̂ ′i − 1| ≤ 2ε′n(δ/(2(ε′ + f)n)) < δ. For |i| > εn,
however, F̂ ′i ≤ 2(ε′ + f)nδ/(2(ε′ + f)n) < δ. Thus F ′

is an (ε, ε′, δ, w) flat window function, with the correct
w. �

(b) Permutation of Spectra. Following
[GMS05], we can permute the Fourier spectrum as fol-
lows by permuting the time domain:

Claim 3.5. Define the transform Pσ,τ such that, given
an n-dimensional vector x, an integer σ that is invertible
mod n, and an integer τ ∈ [n], (Pσ,τx)i = xσi+τ . Then

(P̂σ,τx)σi = x̂iω
−τi.

Proof. For all a, (P̂σ,τx)a =
∑n
j=1 xσj+τω

aj =∑n
j=1 xjω

a(j−τ)σ−1

= x̂aσ−1ω−τaσ
−1

. �

Lemma 3.6. If j 6= 0, n is a power of two, and σ is
a uniformly random odd number in [n], then Pr[σj ∈
[−C,C]] ≤ 4C/n.

Proof. If j = a2b for some odd a, then the orbit of σj is
a′2b for all odd a′. There are thus 2 · round(C/2b+1) <
4C/2b+1 possible values in [−C,C] out of n/2b+1 such
elements in the orbit, for a chance of at most 4C/n. �

Note that for simplicity, we will only analyze our
algorithm when n is a power of two. For general n,
the analog of Lemma 3.6 would lose an n/ϕ(n) =
O(log log n) factor, where ϕ is Euler’s totient function.
This will correspondingly increase the running time of
the algorithm on general n.

Claim 3.5 allows us to change the set of coeffi-
cients binned to a bucket by changing the permutation;
Lemma 3.6 bounds the probability of non-zero coeffi-
cients falling into the same bucket.

(c) Subsampled FFT. Suppose we have a vector
x ∈ Cn and a parameter B dividing n, and would like
to compute ŷi = x̂i(n/B) for i ∈ [B].

Claim 3.7. ŷ is the B-dimensional Fourier transform

of yi =
∑n/B−1
j=0 xi+Bj .

Therefore ŷ can be computed in O(|supp(x)| +
B logB) time.

Proof.

x̂i(n/B) =

n−1∑
j=0

xjω
ij(n/B) =

B−1∑
a=0

n/B−1∑
j=0

xBj+aω
i(Bj+a)n/B

=

B−1∑
a=0

n/B−1∑
j=0

xBj+aω
ian/B =

B−1∑
a=0

yaω
ian/B = ŷi,

as desired. �

4 Algorithm

A key element of our algorithm is the inner loop,
which finds and estimates each “large” coefficient with
constant probability. In §4.1 we describe the inner loop,
and in §4.2 we show how to use it to construct the full
algorithm.

4.1 Inner Loop Let B be a parameter that di-
vides n, to be determined later. Let G be a
(1/B, 1/(2B), δ, w) flat window function for some δ and
w = O(B log n

δ ). We will have δ ≈ 1/nc, so one can
think of it as negligibly small.

There are two versions of the inner loop: location
loops and estimation loops. Location loops are given
a parameter d, and output a set I ⊂ [n] of dkn/B
coordinates that contains each large coefficient with
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Figure 1: An example flat window function for n = 256. This is the sum of 31 adjacent (1/22, 10−8, 133)
Dolph-Chebyshev window functions, giving a (0.11, 0.06, 2× 10−9, 133) flat window function (although our proof

only guarantees a tolerance δ = 29×10−8, the actual tolerance is better). The top row shows G and Ĝ in a linear
scale, and the bottom row shows the same with a log scale.



“good” probability. Estimation loops are given a set
I ⊂ [n] and estimate xI such that each coordinate is
estimated well with “good” probability.

1. Choose a random σ, τ ∈ [n] with σ odd.
2. Define y = G · (Pσ,τx), so yi = Gixσi+τ . Then

supp(y) ⊆ supp(G) = [w].
3. Compute ẑi = ŷi(n/B) for i ∈ [B]. By Claim 3.7,

this is the DFT of zi =
∑dw/Be−1
j=0 yi+jB .

4. Define the “hash function” hσ : [n] → [B]
by hσ(i) = round(σiB/n) and the “offset”
oσ : [n] → [−n/(2B), n/(2B)] by oσ(i) = σi −
hσ(i)(n/B).

5. Location loops: let J contain the dk coordinates
of maximum magnitude in ẑ. Output I = {i ∈
[n] | hσ(i) ∈ J}, which has size dkn/B.

6. Estimation loops: for i ∈ I, estimate x̂i as
x̂′i = ẑhσ(i)ω

τi/Ĝoσ(i).

By Claim 3.7, we can compute ẑ inO(w+B logB) =
O(B log n

δ ) time. Location loops thus take O(B log n
δ +

dkn/B) time and estimation loops take O(B log n
δ + |I|)

time. Fig. 2 illustrates the inner loop.
For estimation loops, we get the following guaran-

tee:

Lemma 4.1. Let S be the support of the largest k
coefficients of x̂, and x̂−S contain the rest. Then for
any ε ≤ 1,

Pr
σ,τ

[|x̂′i − x̂i|2 ≥
ε

k
‖x̂−S‖22 + 3δ2 ‖x̂‖21] < O(

k

εB
).

Proof. By the definitions,

x̂′i = ẑhσ(i)ω
τi/Ĝoσ(i) = ŷσi−oσ(i)ω

τi/Ĝoσ(i).

Consider the case that x̂ is zero everywhere but at i,

so supp(P̂σ,τx) = {σi}. Then ŷ is the convolution of Ĝ

and P̂σ,τx, and Ĝ is symmetric, so

ŷσi−oσ(i) = (Ĝ ∗ P̂σ,τx)σi−oσ(i) = Ĝ−oσ(i)P̂σ,τxσi

= Ĝoσ(i)x̂iω
−τi

which shows that x̂′i = x̂i in this case. But x̂′i − x̂i is
linear in x̂, so in general we can assume x̂i = 0 and
bound |x̂′i|.

Since |x̂′i| = |ẑhσ(i)/Ĝoσ(i)| < |ẑhσ(i)/(1 − δ)| =
|ŷσi−oσ(i)|/(1− δ), it is sufficient to bound |ŷσi−oσ(i)|.

Define T = {j ∈ [n] | σ(i − j) ∈ [−2n/B, 2n/B]}.

We have that

|ŷσi−oσ(i)|2 =

∣∣∣∣∣
n−1∑
t=0

(P̂σ,τx)tĜσi−t−oσ(i)

∣∣∣∣∣
2

=

∣∣∣∣∣∣
n−1∑
j=0

(P̂σ,τx)σjĜσ(i−j)−oσ(i)

∣∣∣∣∣∣
2

≤ 2

∣∣∣∣∣∣
∑
j∈T

(P̂σ,τx)σjĜσ(i−j)−oσ(i)

∣∣∣∣∣∣
2

+ 2

∣∣∣∣∣∣
∑
j /∈T

(P̂σ,τx)σjĜσ(i−j)−oσ(i)

∣∣∣∣∣∣
2

≤ 2(1 + δ)2

∣∣∣∣∣∣
∑
j∈T

(P̂σ,τx)σj

∣∣∣∣∣∣
2

+ 2δ2

∣∣∣∣∣∣
∑
j /∈T

(P̂σ,τx)σj

∣∣∣∣∣∣
2

In the last step, the left term follows from |Ĝa| ≤
1 + δ for all a. The right term is because for j /∈
T , |σ(i− j)− oσ(i)| ≥ |σ(i− j)| − |oσ(i)| > 2n/B −
n/(2B) > n/B, and |Ĝa| ≤ δ for |a| > n/B. By
Claim 3.5, this becomes:

|ŷσi−oσ(i)|2 ≤ 2(1 + δ)2

∣∣∣∣∣∣
∑
j∈T

x̂jω
−τj

∣∣∣∣∣∣
2

+ 2δ2 ‖x̂‖21 .

Define V =
∣∣∣∑j∈T x̂jω

−τj
∣∣∣2. As a choice over τ ,

V is the energy of a random Fourier coefficient of the
vector x̂T so we can bound the expectation over τ :

E
τ

[V ] = ‖x̂T ‖22 .

Now, for each coordinate j 6= i, Prσ[j ∈ T ] ≤ 8/B by
Lemma 3.6. Thus Prσ[S ∩ T 6= ∅] ≤ 8k/B, so with
probability 1− 8k/B over σ we have

‖x̂T ‖22 =
∥∥x̂T\S∥∥2

2
.

Let E be the event that this occurs, so E is 0 with
probability 8k/B and 1 otherwise. We have

E
σ,τ

[EV ] = E
σ

[E ‖x̂T ‖22] = E
σ

[E
∥∥x̂T\S∥∥2

2
] ≤ E

σ
[
∥∥x̂T\S∥∥2

2
].

Furthermore, we know

E
σ,τ

[EV ] ≤ E
σ

[
∥∥x̂T\S∥∥2

2
] =

∑
j /∈S

|x̂j |2 Pr
σ

[σ(i− j) ∈ [−2n/B, 2n/B]]

≤ 8

B
‖x̂−S‖22
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Figure 2: Example inner loop of the algorithm on sparse input. This run has parameters n = 256, k = 4,
G being the (0.11, 0.06, 2× 10−9, 133) flat window function in Fig. 1, and selecting the top 4 of B = 16 samples.
In part (a), the algorithm begins with time domain access to Pσ,τx given by (Pσ,τx)i = xσi+τ , which permutes
the spectrum of x by permuting the samples in the time domain. In part (b), the algorithm computes the time
domain signal y = G · Pσ,τx. The spectrum of y (pictured) is large around the large coordinates of Pσ,τx. The
algorithm then computes ẑ, which is the rate B subsampling of ŷ as pictured in part (c). During estimation loops,
the algorithm estimates x̂i based on the value of the nearest coordinate in ẑ, namely ẑhσ(i). During location loops
(part (d)), the algorithm chooses J , the top dk (here, 4) coordinates of ẑ, and selects the elements of [n] that
are closest to those coordinates (the shaded region of the picture). It outputs the set I of preimages of those
elements. In this example, the two coordinates on the left landed too close in the permutation and form a “hash
collision”. As a result, the algorithm misses the second from the left coordinate in its output. Our guarantee is
that each large coordinate has a low probability of being missed if we select the top O(k) samples.



by Lemma 3.6. Therefore, by Markov’s inequality and
a union bound, we have for any C > 0 that

Pr
σ,τ

[V > 8
C

B
‖x̂−S‖22] ≤ Pr

σ,τ
[E = 0 ∪ EV > C E

σ,τ
[EV ]]

≤ 8
k

B
+ 1/C.

Hence

Pr
σ,τ

[|ŷσi−oσ(i)|2 ≥ 16
C

B
(1 + δ)2 ‖x̂−S‖22 + 2δ2 ‖x̂‖21]

< 8
k

B
+ 1/C.

Replacing C with εB/(32k) and using |x̂′i − x̂i| <
|ŷσi−oσ(i)|/(1− δ) gives

Pr
σ,τ

[|x̂′i − x̂i|2 ≥
ε

2k
(
1 + δ

1− δ
)2 ‖x̂−S‖22 +

2

1− δ
δ2 ‖x̂‖21]

< (8 + 32/ε)
k

B
.

which implies the result. �

Furthermore, since |Ĝoσ(i)| ∈ [1 − δ, 1 + δ], |ẑhσ(i)|
is a good estimate for |x̂i|—the division is mainly useful
for fixing the phase. Therefore in location loops, we get
the following guarantee:

Lemma 4.2. Define E =
√

ε
k ‖x̂−S‖

2
2 + 3δ2 ‖x̂‖21 to be

the error tolerated in Lemma 4.1. Then for any i ∈ [n]
with |x̂i| ≥ 4E,

Pr[i /∈ I] ≤ O(
k

εB
+

1

εd
)

Proof. With probability at least 1 − O( k
εB ), |x̂′i| ≥

|x̂i| − E ≥ 3E. In this case |ẑhσ(i)| ≥ 3(1 − δ)E.
Thus it is sufficient to show that, with probability at
least 1 − O( 1

εd ), there are at most dk locations j ∈ [B]
with |ẑj | ≥ 3(1 − δ)E. Since each ẑj corresponds to
n/B locations in [n], we will show that with probability
at least 1 − O( 1

εd ), there are at most dkn/B locations
j ∈ [n] with |x̂′j | ≥ 3(1− δ)2E.

Let U = {j ∈ [n] | |x̂j | ≥ E}, and V = {j ∈ [n] |
|x̂′j−x̂j | ≥ E}. Therefore {j ∈ [n] | |x̂′j | ≥ 2E} ⊆ U∪V .

Since 2 ≤ 3(1− δ)2, we have∣∣{j | |x̂′j | ≥ 3(1− δ)2E}
∣∣ ≤ |U ∪ V | .

We also know

|U | ≤ k +
‖x−S‖22
E2

≤ k(1 + 1/ε)

and by Lemma 4.1,

E[|V |] ≤ O(
kn

εB
).

Thus by Markov’s inequality Pr[|V | ≥ dk nB ] ≤ O( 1
εd ),

or

Pr[|U ∪ V | ≥ dk n
B

+ k(1 + 1/ε)] ≤ O(
1

εd
).

Since the RHS is only meaningful for d > 1/ε we have
dk nB > k(1 + 1/ε). Therefore

Pr[|U ∪ V | ≥ dk n
B

] ≤ O(
1

εd
).

and thus

Pr[|{j ∈ [B] | |ẑj | ≥ 3(1− δ)E}| > kd] ≤ O(
1

εd
).

Hence a union bound over this and the probability that
|x̂′i − x̂i| < E gives

Pr[i /∈ I] ≤ O(
k

εB
+

1

εd
)

as desired. �

4.2 Outer Loop Our algorithm is parameterized by
ε and δ. It runs L = O(log n) iterations of the inner

loop, with parameters B = O(
√

nk
ε log(n/δ) ) 7 and d =

O(1/ε) as well as δ.

1. For r ∈ {1, . . . , L}, run a location inner loop to
get Ir.

2. For each i ∈ I = I1 ∪ · · · ∪ IL, let si =
|{r | i ∈ Ir}|.

3. Let I ′ = {i ∈ I | si ≥ L/2}.
4. For r ∈ {1, . . . , L}, run an estimation inner loop

on I ′ to get x̂rI′ .
5. For i ∈ I ′, estimate x̂′i = median({x̂ri | i ∈ I ′}),

where we take the median in real and imaginary
coordinates separately.

Lemma 4.3. The algorithm runs in time

O(
√

nk log(n/δ)
ε log n).

Proof. To analyze this algorithm, note that

|I ′| L
2
≤
∑
i

si =
∑
r

|Ir| = Ldkn/B

7Note that B is chosen in order to minimize the running time.

For the purpose of correctness, it suffices that B ≥ ck/ε for some
constant c. We will use this fact later in the experimental section.



or |I ′| ≤ 2dkn/B. Therefore the running time of both
the location and estimation inner loops is O(B log n

δ +
dkn/B). Computing I ′ and computing the medians
both take linear time, namely O(Ldkn/B). Thus the
total running time is O(LB log n

δ +Ldkn/B). Plugging

in B = O(
√

nk
ε log(n/δ) ) and d = O(1/ε), this running

time is O(
√

nk log(n/δ)
ε log n). We require B = Ω(k/ε),

however; for k > εn/ log(n/δ), this would cause the run
time to be larger. But in this case, the predicted run
time is Ω(n log n) already, so the standard FFT is faster
and we can fall back on it. �

Theorem 4.4. Running the algorithm with parameters
ε, δ < 1 gives x̂′ satisfying

‖x̂′ − x̂‖2∞ ≤
ε

k
‖x̂−S‖22 + δ2 ‖x̂‖21 .

with probability 1 − 1/n and running time

O(
√

nk log(n/δ)
ε log n).

Proof. Define

E =

√
ε

k
‖x̂−S‖22 + 3δ2 ‖x̂‖21

Lemma 4.2 says that in each location iteration r, for
any i with |x̂i| ≥ 4E,

Pr[i /∈ Ir] ≤ O(
k

εB
+

1

εd
) ≤ 1/4.

Thus E[si] ≥ 3L/4, and each iteration is an independent
trial, so by a Chernoff bound the chance that si < L/2
is at most 1/2Ω(L) < 1/n3. Therefore by a union bound,
with probability at least 1 − 1/n2, i ∈ I ′ for all i with
|x̂i| ≥ 4E.

Next, Lemma 4.1 says that for each estimation
iteration r and index i,

Pr[|x̂ri − x̂i| ≥ E] ≤ O(
k

εB
) < 1/4.

Therefore, with probability 1 − 2−Ω(L) ≥ 1 − 1/n3,
|x̂ri − x̂i| ≤ E in at least 2L/3 of the iterations.

Since real(x̂′i) is the median of the real(x̂ri ), there
must exist two r with |x̂ri − x̂i| ≤ E but one real(x̂ri )
above real(x̂′i) and one below. Hence one of these r has
|real(x̂′i − x̂i)| ≤ |real(x̂ri − x̂i)| ≤ E, and similarly for
the imaginary axis. Then

|x̂′i−x̂i| ≤
√

2 max(|real(x̂′i−x̂i)|, |imag(x̂′i−x̂i)|) ≤
√

2E.

By a union bound over I ′, with probability at least
1 − 1/n2 we have |x̂′i − x̂i| ≤

√
2E for all i ∈ I ′. Since

all i /∈ I ′ have x̂′i = 0 and |x̂i| ≤ 4E with probability
1− 1/n2, with total probability 1− 2/n2 we have

‖x̂′ − x̂‖2∞ ≤ 16E2 =
16ε

k
‖x̂−S‖22 + 48δ2 ‖x̂‖21 .

Rescaling ε and δ gives our theorem. �

5 Experimental Evaluation

5.1 Implementation We implement our algorithm
in C++ using the Standard Template Library, and
refer to this implementation as sFFT (which stands for
“sparse FFT”). We have two versions: sFFT 1.0, which
implements the algorithm as in §4, and sFFT 2.0, which
adds a heuristic to improve the runtime.

sFFT 2.0. The idea of the heuristic is to apply
the filter used in [Man92] to restrict the locations of the
large coefficients. The heuristic is parameterized by an
M dividing n. During a preprocessing stage, it does the
following:

1. Choose τ ∈ [n] uniformly at random.
2. For i ∈ [M ], set yi = xi(n/M)+τ .
3. Compute ŷ.
4. Output T ⊂ [M ] containing the 2k largest

elements of ŷ.

Observe that ŷi =
∑n/M
j=0 x̂Mj+iω

−τ(i+Mj). Thus,

E
τ

[|ŷi|2] =
∑

i≡j mod M

|x̂j |2.

This means that the filter is very efficient, in that it
has no leakage at all. Also, it is simple to compute.
Unfortunately, it cannot be “randomized” using Pσ,τ :
after permuting by σ, any two colliding elements j and
j′ (i.e., such that j = j′ (mod M)) continue to collide.
Nevertheless, if x̂j is large, then j (mod M) is likely to
lie in T—at least heuristically on random input.

sFFT 2.0 completes the algorithm assuming that all
“large” coefficients j have j mod M in T . That is, in
the main algorithm of §4, we then restrict our sets Ir to
contain only coordinates i with (i mod M) ∈ T . We
expect that |Ir| ≈ 2k

M dkn/B rather than the previous
dkn/B. This means that our heuristic will improve the
runtime of the inner loops from O(B log(n/δ)+dkn/B)
to O(B log(n/δ) + k

M dkn/B + M + dk), at the cost of
O(M logM) preprocessing.

Note that on worst case input, sFFT 2.0 may give
incorrect output with high probability. For example, if
xi = 1 when i is a multiple of n/M and 0 otherwise,
then y = 0 with probability 1−M/n and the algorithm
will output 0 over supp(x). However, in practice the
algorithm works for ”sufficiently random” x.



Claim 5.1. As a heuristic approximation, sFFT 2.0
runs in O((k2n log(n/δ)/ε)1/3 log n) as long as k ≤
ε2n log(n/δ).

Justification. First we will show that the heuristic
improves the inner loop running time to O(B log(n/δ)+
k
M dkn/B + M + dk), then optimize the parameters M
and B.

Heuristically, one would expect each of the Ir to be a
|T |
M factor smaller than if we did not require the elements
to lie in T modulo M . Hence, we expect each of the Ir
and I ′ to have size |T |M dkn/B = O( kM dkn/B). Then
in each location loop, rather than spending O(dkn/B)
time to list our output, we spend O( kM dkn/B) time—
plus the time required to figure out where to start listing
coordinates from each of the dk chosen elements J of ẑ.
We do this by sorting J and {σi | i ∈ T} (mod M), then
scanning through the elements. It takes O(M+dk) time
to sort O(dk) elements in [M ], so the total runtime of
each location loop is O(B log(n/δ)+ k

M dkn/B+M+dk).
The estimation loops are even faster, since they benefit
from |I ′| being smaller but avoid the M + dk penalty.

The full algorithm does O(M logM) preprocessing
and runs the inner loop L = O(log n) times with
d = O(1/ε). Therefore, given parameters B and
M , the algorithm takes O(M logM + B log n

δ log n +
k
M

kn
εB log n + M log n + k

ε log n) time. Optimizing over
B, we take

O(M log n+ k

√
n

Mε
log(n/δ) log n+

k

ε
log n)

time. Then, optimizing over M , this becomes

O((k2n log(n/δ)/ε)1/3 log n+
k

ε
log n)

time. If k < ε2n log(n/δ), the first term dominates.

Note that this is an (n log(n/δ)
εk )1/6 factor smaller

than the running time of sFFT 1.0.

5.2 Numerical Results We evaluate the perfor-
mance of sFFT 1.0 and sFFT 2.0, and compare them
against two baselines: 1) FFTW 3.2.2 [FJ], which is
the fastest public implementation for computing the
DFT and has a runtime of O(n log(n)), and 2) AAFFT
0.9 [Iwe08], which is the prior sublinear algorithm with
the fastest empirical runtime [IGS07]. For completeness,
we compare against two variants of FFTW: basic and
optimized. The optimized version requires preprocess-
ing, during which the algorithm is tuned to a particular
machine hardware. In contrast, our current implemen-
tations of sFFT variants do not perform hardware spe-
cific optimizations.

Experimental Setup. The test signals are gener-
ated in a manner similar to that in [IGS07]. For the run-
time experiments, k frequencies are selected uniformly
at random from [n] and assigned a magnitude of 1 and
a uniformly random phase. The rest are set to zero.
For the tolerance to noise experiments, the test signals
are generated as before but they are combined with ad-
ditive white Gaussian noise, whose variance varies de-
pending on the desired SNR. Each point in the graphs
is the average over 100 runs with different instances of
test signals and different instances of noise. In all ex-
periments, the parameters of sFFT 1.0, sFFT 2.0, and
AAFFT 0.9 are chosen so that the average L1 error
in the absence of noise is between 10−7 and 10−8 per
non-zero frequency.8Finally, all experiments are run on
a Dual Core Intel 3.0 GHz CPU running Ubuntu Linux
10.04 with a cache size of 6144 KB and 8 GB of RAM.

Runtime vs. Signal Size. In this experiment,
we fix the sparsity parameter k = 50 and report the
runtime of the compared algorithms for 12 different
signal sizes n : 214, 215, ..., 226. We plot, in Fig. 3(a),
the mean, maximum, and minimum runtimes for sFFT
1.0, sFFT 2.0, AAFFT 0.9, FFTW, and FFTW OPT,
over 100 runs. The relative runtimes of AAFFT 0.9 and
FFTW are consistent with those reported in [IGS07],
Fig. 3.1.

As expected, Fig. 3(a) shows that the runtimes
of sFFT and FFTW (and their variants) are approxi-
mately linear in the log scale. However, the slope of the
line for sFFT is less than the slope for FFTW, which is a
result of sFFT’s sub-linear runtime. Further, the figure
shows that for signal sizes n > 100, 000 both sFFT 1.0
and sFFT 2.0 are faster than both variants of FFTW
at recovering the exact 50 non-zero coefficients. On the
other hand, the runtime of AAFFT 0.9 is proportional
to polylog(n) and thus it appears almost constant as we
increase the signal size. For n = 226 (i.e., 67,108,864),
AAFFT 0.9 eventually beats the runtime of sFFT 1.0
and is only 2 times slower than sFFT 2.0. Overall,
for a large range of signal sizes from about 100,000 to
67,108,864, sFFT has the fastest runtime.

Runtime vs. Number of Non-Zero Frequen-
cies. In this experiment, we fix the signal size to n =
222 (i.e. 4,194,304) and evaluate the run time of sFFT
vs. the number of non-zero frequencies k. For each value
of k, the experiment is repeated 100 times. Fig. 3(b) il-
lustrates the mean, maximum, and minimum runtimes
for the compared algorithms.

Fig. 3(b) shows that sFFT 1.0 and sFFT 2.0 have a
faster runtime than basic FFTW for k up to 2000 and

8For the values of k and n that are close to the ones considered
in [IGS07], we use the parameters therein. For other ranges, we

follow the guidelines in the AAFFT 0.9 documentation [Iwe08].
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Figure 3: (a) Runtime vs. signal size. The figure shows that for a large range of signal sizes, n ∈ [217, 226],
sFFT is faster than FFTW and the state-of-the-art sublinear algorithm. (b) Runtime vs. sparsity parameter.
The figure shows that sFFT significantly extends the range of applications for which sparse approximation of DFT
is practical, and beats the runtime of FFTW for values of k order of magnitude larger than those achieved by
past work.

2200, respectively. When compared to the optimized
FFTW, the crossing values become 500 and 1000.
Thus, sFFT’s crossing values are around

√
n. In

comparison, AAFFT 0.9 is faster than FFTW variants
for k between 100 and 200. Further, the relative
runtimes of AAFFT 0.9, and FFTW 3.2.2 are close to
those reported in [IGS07], Fig. 3.2. Finally, FFTW
has a runtime of O(n log(n)), which is independent
of the number of non-zero frequencies k, as can be
seen in Fig. 3(b). Thus, as the sparsity of the signal
decreases (i.e., k increases), FFTW eventually becomes
faster than sFFT and AAFFT. Nonetheless, the results
show that in comparison with the fastest prior sublinear
algorithm [IGS07], sFFT significantly extends the range
of applications for which sparse approximation of DFT
is practical.

Robustness to Noise. Last, we would like to
check that sFFT’s reduced runtime does not come at
the expense of reducing robustness to noise. Thus,
we compare the performance of sFFT 1.0 and sFFT
2.0 against AAFFT 0.9, for different levels of white
Gaussian noise. Specifically, we fix the n = 222 and
k = 50, and experiment with different signal SNRs.9

We change the SNR by changing the variance of the
Gaussian noise. For each noise variance, we run multiple
experiments by regenerating new instances of the signal
and noise vectors. For each run, we compute the error
metric per as the average L1 error between the output

9The SNR is defined as SNR = 20 log
||x||2
||z||2

, where z is an

n-dimensional noise vector.

approximation x̂′ (restricted to its k largest entries) and
the best k-sparse approximation of x̂ referred to as ŷ:

Average L1 Error =
1

k

∑
0<i≤n

|x̂′i − ŷi|.

Fig. 4 plots the average error per non-zero frequency
for sFFT 1.0, sFFT 2.0, and AAFFT 0.9. The figure
shows that all three algorithms are stable under noise.
Further, sFFT variants appear to be more robust to
noise than AAFFT 0.9.
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